A298920 Number of n X 4 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1, 8, 2, 3, 7, 6, 9, 20, 22, 35, 59, 90, 145, 240, 378, 611, 991, 1598, 2585, 4188, 6766, 10947, 17715, 28658, 46369, 75032, 121394, 196419, 317815, 514230, 832041, 1346276, 2178310, 3524579, 5702891, 9227466, 14930353, 24157824, 39088170
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1 ..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1 ..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1 ..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1 ..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298924.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8).
Comments