A298921 Number of nX5 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
0, 32, 3, 7, 9, 12, 17, 41, 42, 67, 109, 172, 277, 461, 722, 1167, 1889, 3052, 4937, 8001, 12922, 20907, 33829, 54732, 88557, 143301, 231842, 375127, 606969, 982092, 1589057, 2571161, 4160202, 6731347, 10891549, 17622892, 28514437, 46137341
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1 ..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1 ..1..1..0..0..0. .0..0..0..1..1. .1..1..1..1..1. .0..0..1..1..1 ..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1 ..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298924.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8) for n>11
Comments