A298919
Number of nX3 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 4, 1, 2, 3, 5, 8, 16, 21, 34, 55, 89, 144, 236, 377, 610, 987, 1597, 2584, 4184, 6765, 10946, 17711, 28657, 46368, 75028, 121393, 196418, 317811, 514229, 832040, 1346272, 2178309, 3524578, 5702887, 9227465, 14930352, 24157820, 39088169
Offset: 1
All solutions for n=5
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
A298920
Number of n X 4 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 8, 2, 3, 7, 6, 9, 20, 22, 35, 59, 90, 145, 240, 378, 611, 991, 1598, 2585, 4188, 6766, 10947, 17715, 28658, 46369, 75032, 121394, 196419, 317815, 514230, 832041, 1346276, 2178310, 3524579, 5702891, 9227466, 14930353, 24157824, 39088170
Offset: 1
Some solutions for n=5
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
A298921
Number of nX5 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 32, 3, 7, 9, 12, 17, 41, 42, 67, 109, 172, 277, 461, 722, 1167, 1889, 3052, 4937, 8001, 12922, 20907, 33829, 54732, 88557, 143301, 231842, 375127, 606969, 982092, 1589057, 2571161, 4160202, 6731347, 10891549, 17622892, 28514437, 46137341
Offset: 1
Some solutions for n=5
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..1..1. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
A298922
Number of nX6 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 32, 5, 6, 12, 19, 22, 48, 53, 103, 169, 272, 446, 863, 1346, 2395, 4154, 7334, 12706, 22695, 39500, 70143, 123441, 218719, 385766, 684533, 1208762, 2142932, 3791443, 6719743, 11895717, 21085505, 37340353, 66178799, 117235756, 207768546
Offset: 1
Some solutions for n=5
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..0. .0..0..0..0..1..1. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
A298923
Number of n X 7 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 64, 8, 9, 17, 22, 31, 83, 92, 172, 309, 549, 923, 1830, 3021, 5580, 10091, 18344, 33025, 61470, 111014, 205198, 376471, 694579, 1277419, 2365958, 4360085, 8074209, 14929946, 27656016, 51194508, 94924809, 175864241, 326176032, 604808134
Offset: 1
Some solutions for n=5
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
A298918
Number of n X n 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 4, 1, 3, 9, 19, 31, 199, 330, 1377, 6627, 23223, 113179, 849856, 5207476, 43357615
Offset: 1
Some solutions for n=5
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..1..0..0. .0..0..1..1..1
Showing 1-6 of 6 results.
Comments