cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298919 Number of nX3 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 4, 1, 2, 3, 5, 8, 16, 21, 34, 55, 89, 144, 236, 377, 610, 987, 1597, 2584, 4184, 6765, 10946, 17711, 28657, 46368, 75028, 121393, 196418, 317811, 514229, 832040, 1346272, 2178309, 3524578, 5702887, 9227465, 14930352, 24157820, 39088169
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Column 3 of A298924.

Examples

			All solutions for n=5
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .1..1..1
		

Crossrefs

Cf. A298924.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8)

A298920 Number of n X 4 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 2, 3, 7, 6, 9, 20, 22, 35, 59, 90, 145, 240, 378, 611, 991, 1598, 2585, 4188, 6766, 10947, 17715, 28658, 46369, 75032, 121394, 196419, 317815, 514230, 832041, 1346276, 2178310, 3524579, 5702891, 9227466, 14930353, 24157824, 39088170
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Column 4 of A298924.

Examples

			Some solutions for n=5
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
..1..1..1..1. .0..1..0..1. .1..1..1..1. .0..0..0..0. .0..0..1..1
		

Crossrefs

Cf. A298924.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8).

A298921 Number of nX5 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 32, 3, 7, 9, 12, 17, 41, 42, 67, 109, 172, 277, 461, 722, 1167, 1889, 3052, 4937, 8001, 12922, 20907, 33829, 54732, 88557, 143301, 231842, 375127, 606969, 982092, 1589057, 2571161, 4160202, 6731347, 10891549, 17622892, 28514437, 46137341
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Column 5 of A298924.

Examples

			Some solutions for n=5
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..1..1. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..1..0. .1..1..1..1..1. .0..0..1..1..1
		

Crossrefs

Cf. A298924.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-6) -a(n-7) -a(n-8) for n>11

A298922 Number of nX6 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 32, 5, 6, 12, 19, 22, 48, 53, 103, 169, 272, 446, 863, 1346, 2395, 4154, 7334, 12706, 22695, 39500, 70143, 123441, 218719, 385766, 684533, 1208762, 2142932, 3791443, 6719743, 11895717, 21085505, 37340353, 66178799, 117235756, 207768546
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Column 6 of A298924.

Examples

			Some solutions for n=5
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..1..1..0..0. .0..0..0..0..1..1. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
..0..0..1..1..0..1. .0..0..0..0..1..0. .0..0..0..1..1..1. .1..1..1..1..1..1
		

Crossrefs

Cf. A298924.

A298923 Number of n X 7 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 64, 8, 9, 17, 22, 31, 83, 92, 172, 309, 549, 923, 1830, 3021, 5580, 10091, 18344, 33025, 61470, 111014, 205198, 376471, 694579, 1277419, 2365958, 4360085, 8074209, 14929946, 27656016, 51194508, 94924809, 175864241, 326176032, 604808134
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Column 7 of A298924.

Examples

			Some solutions for n=5
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..0
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
		

Crossrefs

Cf. A298924.

A298918 Number of n X n 0..1 arrays with every element equal to 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 4, 1, 3, 9, 19, 31, 199, 330, 1377, 6627, 23223, 113179, 849856, 5207476, 43357615
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Diagonal of A298924.

Examples

			Some solutions for n=5
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..0..0..0. .0..0..1..0..0. .0..0..1..1..1
		

Crossrefs

Cf. A298924.
Showing 1-6 of 6 results.