A298926 Number of n X 4 0..1 arrays with every element equal to 2, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
0, 2, 4, 11, 23, 72, 201, 597, 1717, 5183, 15479, 46260, 138928, 417427, 1255369, 3777004, 11372190, 34247960, 103164581, 310821235, 936579808, 2822417917, 8506019597, 25636254701, 77267796877, 232891865309, 701970354408
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0 ..0..1..0..1. .0..1..1..0. .0..0..0..0. .0..1..0..1. .0..1..1..0 ..1..1..0..1. .1..0..1..0. .0..0..0..0. .0..1..0..1. .0..1..0..1 ..0..1..0..1. .1..0..1..0. .1..1..1..1. .1..0..0..1. .1..0..0..1 ..0..0..1..1. .1..1..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298930.
Formula
Empirical: a(n) = 6*a(n-1) -10*a(n-2) +7*a(n-3) -23*a(n-4) +31*a(n-5) -15*a(n-6) +104*a(n-7) -147*a(n-8) +182*a(n-9) -366*a(n-10) +376*a(n-11) -685*a(n-12) +689*a(n-13) -613*a(n-14) +1143*a(n-15) -710*a(n-16) -129*a(n-17) -82*a(n-18) -584*a(n-19) +5620*a(n-20) -1356*a(n-21) +6298*a(n-22) -15575*a(n-23) +6568*a(n-24) -15985*a(n-25) +6661*a(n-26) -23488*a(n-27) +19556*a(n-28) +16109*a(n-29) +18333*a(n-30) +8059*a(n-31) -12197*a(n-32) +16533*a(n-33) -27875*a(n-34) -8576*a(n-35) -28209*a(n-36) +16299*a(n-37) +26487*a(n-38) +4040*a(n-39) -22226*a(n-40) +1134*a(n-41) -9128*a(n-42) -7294*a(n-43) +16692*a(n-44) +6504*a(n-45) +1137*a(n-46) -5253*a(n-47) +2127*a(n-48) -324*a(n-49) +1885*a(n-50) -1689*a(n-51) -59*a(n-52) -235*a(n-53) +346*a(n-54) -86*a(n-55) +12*a(n-56) -46*a(n-57) +24*a(n-58) +8*a(n-59) -4*a(n-60) for n>61.
Comments