This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298931 #11 Feb 16 2025 08:33:53 %S A298931 1,0,0,1,1,0,2,1,0,0,2,0,3,0,0,2,2,0,4,1,0,0,2,0,4,0,0,4,1,0,6,2,0,0, %T A298931 2,0,5,0,0,3,3,0,6,1,0,0,4,0,6,0,0,4,5,0,4,3,0,0,2,0,8,0,0,4,3,0,6,3, %U A298931 0,0,4,0,9,0,0,6,4,0,6,2,0,0,4,0,6,0,0 %N A298931 Expansion of psi(x^4) * c(x^3) / (3*x) where phi() is a Ramanujan theta function and c() is a cubic AGM theta function. %C A298931 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A298931 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %H A298931 G. C. Greubel, <a href="/A298931/b298931.txt">Table of n, a(n) for n = 0..1000</a> %H A298931 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A298931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A298931 Expansion of q^(-3/2) * eta(q^8)^2 * eta(q^9)^3 / (eta(q^3) * eta(q^4)) in powers of q. %F A298931 Euler transform of a period 72 sequence. %F A298931 A005872(2*n + 3) = 6*a(n). a(3*n) = A298932(n). a(3*n + 1) = A263452(n-1). a(3*n + 2) = a(4*n + 1) = 0. %e A298931 G.f. = q^3 + q^9 + q^11 + 2*q^15 + q^17 + 2*q^23 + 3*q^27 + 2*q^33 + ... %e A298931 G.f. = 1 + x^3 + x^4 + 2*x^6 + x^7 + 2*x^10 + 3*x^12 + 2*x^15 + ... %t A298931 a[ n_] := SeriesCoefficient[ QPochhammer[ x^8]^2 QPochhammer[ x^9]^3 / (QPochhammer[ x^3] QPochhammer[ x^4]), {x, 0, n}]; %o A298931 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), n))}; %Y A298931 Cf. A005872, A263452, A298932. %K A298931 nonn %O A298931 0,7 %A A298931 _Michael Somos_, Jan 29 2018