This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298934 #8 Jan 29 2018 16:26:03 %S A298934 1,1,0,1,0,0,1,0,1,0,1,0,0,0,0,2,0,1,0,0,0,1,0,0,1,0,0,3,1,0,0,0,0,0, %T A298934 0,3,3,1,0,3,0,2,4,0,0,1,0,0,2,3,1,1,0,6,3,6,1,6,0,3,9,0,6,6,7,0,10,3, %U A298934 3,6,0,8,6,13,2,10,9,10,19,2,14,21,7,2,25 %N A298934 Number of partitions of n^2 into distinct cubes. %H A298934 Alois P. Heinz, <a href="/A298934/b298934.txt">Table of n, a(n) for n = 0..1000</a> %H A298934 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %H A298934 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A298934 a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^3)). %F A298934 a(n) = A279329(A000290(n)). %e A298934 a(15) = 2 because we have [216, 8, 1] and [125, 64, 27, 8, 1]. %p A298934 b:= proc(n, i) option remember; `if`(n=0, 1, %p A298934 `if`(n>i^2*(i+1)^2/4, 0, b(n, i-1)+ %p A298934 `if`(i^3>n, 0, b(n-i^3, i-1)))) %p A298934 end: %p A298934 a:= n-> b(n^2, n): %p A298934 seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 29 2018 %t A298934 Table[SeriesCoefficient[Product[1 + x^k^3, {k, 1, Floor[n^(2/3) + 1]}], {x, 0, n^2}], {n, 0, 84}] %Y A298934 Cf. A000290, A000578, A030272, A030273, A218495, A259792, A279329, A298672, A298848, A298935. %K A298934 nonn %O A298934 0,16 %A A298934 _Ilya Gutkovskiy_, Jan 29 2018