cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298943 Lower of two consecutive Mersenne prime exponents with record first difference.

This page as a plain text file.
%I A298943 #11 Oct 17 2024 12:15:48
%S A298943 2,3,7,19,31,127,607,1279,2281,3217,4423,11213,23209,44497,132049,
%T A298943 216091,1398269,3021377,6972593,13466917,43112609
%N A298943 Lower of two consecutive Mersenne prime exponents with record first difference.
%C A298943 A000043(i) is a term iff A134458(i) is a new record in A134458.
%C A298943 Conjecture: The sequence is infinite.
%H A298943 Wikipedia, <a href="https://en.wikipedia.org/wiki/Mersenne_conjectures#Lenstra%E2%80%93Pomerance%E2%80%93Wagstaff_conjecture">Mersenne conjectures - Lenstra-Pomerance-Wagstaff conjecture</a>.
%e A298943 A000043(7) = 19 and A134458(7) = 12, which is larger than A134458(i) for any i < 7, so 19 is a term of the sequence.
%t A298943 Block[{s = Partition[MersennePrimeExponent@ Range@ 45, 2, 1], t}, t = Map[Differences, s][[All, 1]]; Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]][[All, 1]] (* _Michael De Vlieger_, Jan 31 2018 *)
%o A298943 (PARI) LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after _Joerg Arndt_ in A000043
%o A298943 my(r=0, p=2); forprime(q=3, , if(LL(q), if(q-p > r, print1(p, ", "); r=q-p); p=q))
%Y A298943 Cf. A000043, A134458.
%K A298943 nonn,hard,more
%O A298943 1,1
%A A298943 _Felix Fröhlich_, Jan 30 2018
%E A298943 a(21) from _Amiram Eldar_, Oct 17 2024