This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298946 #14 Feb 03 2018 12:28:41 %S A298946 35,462,2339,4627,2378,4238,5148,1260,57635,85026,64410,100509,163716, %T A298946 171918,93876,309780,148969,444220,370712,532771,652200,938386,816466, %U A298946 907874,569300,1107298,2470810,2953692,887812,1341810,2956584,1941390,589961,6248628 %N A298946 a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number. %C A298946 Composites c where a(n) = 1 could be called "Wolstenholme pseudoprimes". Do any such composites exist? %C A298946 A necessary condition for c to be a "Wolstenholme pseudoprime" would be that it is a term of A228562 or A267824. %H A298946 Robert Israel, <a href="/A298946/b298946.txt">Table of n, a(n) for n = 1..10000</a> %p A298946 R:= NULL: %p A298946 count:= 0: F:= 10; %p A298946 for n from 4 while count < 100 do %p A298946 F:= F * (4*n-2)/n; %p A298946 if not isprime(n) then %p A298946 count:= count+1; %p A298946 R:= R, F mod (n^4); %p A298946 fi %p A298946 od: %p A298946 R; # _Robert Israel_, Feb 02 2018 %t A298946 Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* _Michael De Vlieger_, Feb 01 2018 *) %o A298946 (PARI) forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", ")) %o A298946 (Python) %o A298946 from sympy import binomial, composite %o A298946 def A298946(n): %o A298946 c = composite(n) %o A298946 return binomial(2*c-1,c-1) % c**4 # _Chai Wah Wu_, Feb 02 2018 %Y A298946 Cf. A088164, A228562, A244214, A267824, A281302, A298944, A298945. %K A298946 nonn %O A298946 1,1 %A A298946 _Felix Fröhlich_, Jan 30 2018