This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298947 #16 May 21 2021 04:16:38 %S A298947 1,1,2,3,6,7,11,12,15,19,22,22,29,32,32,38,42,44,49,51,54,63,63,64,71, %T A298947 79,76,84,87,90,96,101,101,113,108,115,122,131,125,134,138,144,147, %U A298947 155,150,169,163,168,173,185,180,194,191,200,198,211,209,227,218,224,231,246 %N A298947 Number of integer partitions y of n such that exactly one permutation of y is a Lyndon word. %e A298947 The a(6) = 7 partitions are (6), (51), (42), (411), (3111), (2211), (21111). This list does not include (321) because there are two possible permutations that are Lyndon words, namely (123) and (132). The list does not include (33), (222), or (111111) because no permutation of these is a Lyndon word. %p A298947 with(combinat): with(numtheory): %p A298947 g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j, %p A298947 (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)): %p A298947 b:= (n, i, l)-> `if`(n=0 or i=1, `if`(g([l[], n])=1, 1, 0), %p A298947 add(b(n-i*j, i-1, [l[], j]), j=0..n/i)): %p A298947 a:= n-> b(n$2, []): %p A298947 seq(a(n), n=1..30); # _Alois P. Heinz_, Feb 09 2018 %t A298947 LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; %t A298947 Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],LyndonQ]]===1&]],{n,20}] %t A298947 (* Second program: *) %t A298947 multinomial[n_, k_List] := n!/Times @@ (k!); %t A298947 g[l_List] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j]*multinomial[n/j, l/j], {j, Divisors[GCD @@ l]}]/n]]; %t A298947 b[n_, i_, l_List] := If[n == 0 || i == 1, If[g[Append[l, n]] == 1, 1, 0], Sum[b[n - i*j, i - 1, Append[l, j]], {j, 0, n/i}]]; %t A298947 a[n_] := b[n, n, {}]; %t A298947 Array[a, 30] (* _Jean-François Alcover_, May 20 2021, after _Alois P. Heinz_ *) %Y A298947 Cf. A000041, A000740, A001037, A032741, A059966, A144300, A167934, A293511, A292444, A298941. %K A298947 nonn %O A298947 1,3 %A A298947 _Gus Wiseman_, Jan 30 2018 %E A298947 a(23)-a(62) from _Alois P. Heinz_, Feb 09 2018