A298965 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
4, 32, 219, 1575, 11283, 80972, 581057, 4169867, 29924442, 214748731, 1541115372, 11059607816, 79367792570, 569572322542, 4087459410676, 29333104460805, 210505091515979, 1510661567154766, 10841060204501930, 77799415112548482
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..1..1. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .0..0..1 ..1..1..1. .1..0..1. .0..0..0. .1..0..1. .0..0..0. .0..1..0. .0..0..0 ..1..1..0. .0..0..1. .0..0..1. .0..0..0. .1..1..1. .0..0..0. .1..1..0 ..0..0..0. .0..0..0. .1..0..1. .0..0..1. .0..1..1. .0..1..1. .0..1..1 ..0..1..0. .1..1..0. .0..0..0. .1..1..1. .0..0..1. .1..1..1. .0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298970.
Formula
Empirical: a(n) = 7*a(n-1) +3*a(n-2) -11*a(n-3) -11*a(n-4) +2*a(n-5) +19*a(n-6) -8*a(n-7) -12*a(n-8)
Comments