A298966 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
8, 128, 1575, 21098, 280468, 3740381, 49885231, 665351771, 8874346832, 118364863862, 1578735453349, 21056975599629, 280855308864195, 3746013029750793, 49963853976933385, 666411644915463676
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..1. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..1 ..1..0..1..1. .1..0..0..1. .0..1..1..1. .0..1..0..1. .0..1..1..1 ..0..1..0..1. .0..1..1..0. .0..0..1..1. .1..0..1..0. .1..1..1..0 ..0..0..1..1. .1..0..0..1. .0..0..1..0. .1..1..0..0. .1..0..0..0 ..1..1..1..0. .1..0..0..1. .0..1..1..0. .1..1..0..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298970.
Formula
Empirical: a(n) = 13*a(n-1) +11*a(n-2) -67*a(n-3) -264*a(n-4) -64*a(n-5) +1260*a(n-6) +656*a(n-7) -3045*a(n-8) -3423*a(n-9) +5088*a(n-10) +9482*a(n-11) -514*a(n-12) -10331*a(n-13) -6164*a(n-14) +3337*a(n-15) +4293*a(n-16) +719*a(n-17) -809*a(n-18) +116*a(n-19) +149*a(n-20) -62*a(n-21) -160*a(n-22) -48*a(n-23)
Comments