cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298965 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 219, 1575, 11283, 80972, 581057, 4169867, 29924442, 214748731, 1541115372, 11059607816, 79367792570, 569572322542, 4087459410676, 29333104460805, 210505091515979, 1510661567154766, 10841060204501930, 77799415112548482
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Column 3 of A298970.

Examples

			Some solutions for n=5
..0..0..0. .0..1..1. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .0..0..1
..1..1..1. .1..0..1. .0..0..0. .1..0..1. .0..0..0. .0..1..0. .0..0..0
..1..1..0. .0..0..1. .0..0..1. .0..0..0. .1..1..1. .0..0..0. .1..1..0
..0..0..0. .0..0..0. .1..0..1. .0..0..1. .0..1..1. .0..1..1. .0..1..1
..0..1..0. .1..1..0. .0..0..0. .1..1..1. .0..0..1. .1..1..1. .0..0..1
		

Crossrefs

Cf. A298970.

Formula

Empirical: a(n) = 7*a(n-1) +3*a(n-2) -11*a(n-3) -11*a(n-4) +2*a(n-5) +19*a(n-6) -8*a(n-7) -12*a(n-8)

A298966 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1575, 21098, 280468, 3740381, 49885231, 665351771, 8874346832, 118364863862, 1578735453349, 21056975599629, 280855308864195, 3746013029750793, 49963853976933385, 666411644915463676
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Column 4 of A298970.

Examples

			Some solutions for n=5
..0..0..0..1. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..1
..1..0..1..1. .1..0..0..1. .0..1..1..1. .0..1..0..1. .0..1..1..1
..0..1..0..1. .0..1..1..0. .0..0..1..1. .1..0..1..0. .1..1..1..0
..0..0..1..1. .1..0..0..1. .0..0..1..0. .1..1..0..0. .1..0..0..0
..1..1..1..0. .1..0..0..1. .0..1..1..0. .1..1..0..1. .1..0..1..0
		

Crossrefs

Cf. A298970.

Formula

Empirical: a(n) = 13*a(n-1) +11*a(n-2) -67*a(n-3) -264*a(n-4) -64*a(n-5) +1260*a(n-6) +656*a(n-7) -3045*a(n-8) -3423*a(n-9) +5088*a(n-10) +9482*a(n-11) -514*a(n-12) -10331*a(n-13) -6164*a(n-14) +3337*a(n-15) +4293*a(n-16) +719*a(n-17) -809*a(n-18) +116*a(n-19) +149*a(n-20) -62*a(n-21) -160*a(n-22) -48*a(n-23)

A298967 Number of n X 5 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11283, 280468, 6892031, 170137416, 4200575252, 103715870545, 2560893666570, 63232497527110, 1561310446894473, 38551239404752239, 951891497499265483, 23503717252026765272, 580344217887313443874
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Column 5 of A298970.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..0..1. .0..0..1..0..1. .0..1..0..1..1. .0..0..1..1..0
..0..1..1..0..1. .1..1..0..1..0. .1..0..1..1..1. .0..1..1..0..0
..0..1..0..1..1. .0..0..1..0..0. .1..1..0..1..0. .1..0..1..1..1
..1..0..0..0..1. .1..0..0..1..1. .0..1..0..1..1. .0..0..1..1..0
		

Crossrefs

Cf. A298970.

Formula

Empirical recurrence of order 75 (see link above).

A298968 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 80972, 3740381, 170137416, 7785598672, 356356552103, 16312003284843, 746698046920333, 34181115229827771, 1564687555985990215, 71625762302968232113, 3278769787462125741510, 150090290173413011810518
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Column 6 of A298970.

Examples

			Some solutions for n=5
..0..0..1..0..1..0. .0..0..1..1..0..1. .0..0..1..0..1..1. .0..0..1..0..0..0
..0..0..1..0..1..1. .0..0..1..1..1..1. .0..0..1..1..0..0. .0..0..1..0..1..1
..0..0..1..1..0..0. .0..0..1..0..0..0. .0..0..1..1..0..1. .0..0..1..0..0..0
..0..1..0..1..1..0. .0..0..1..0..1..0. .0..1..0..1..1..0. .0..1..0..1..1..0
..0..0..0..1..0..0. .0..1..0..1..0..1. .0..0..1..0..1..0. .0..1..0..0..0..0
		

Crossrefs

Cf. A298970.

A298969 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 581057, 49885231, 4200575252, 356356552103, 30241030285680, 2566506415636896, 217825152899921097, 18487503017529807194, 1569093086125030344062, 133174005805446365581185
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Column 7 of A298970.

Examples

			Some solutions for n=5
..0..0..0..0..1..1..0. .0..0..0..1..1..1..1. .0..0..0..0..0..0..0
..0..1..1..0..1..1..0. .0..1..1..0..0..0..1. .0..1..1..0..1..1..0
..0..0..1..0..0..1..1. .0..0..1..0..1..0..0. .0..0..1..0..0..1..0
..0..0..0..0..1..0..1. .0..0..0..0..1..1..0. .0..0..0..0..1..1..0
..0..1..1..1..0..0..0. .0..1..1..0..1..1..1. .0..1..1..0..0..1..0
		

Crossrefs

Cf. A298970.

A298964 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 219, 21098, 6892031, 7785598672, 30241030285680, 403845370764198967, 18541589058526001745929
Offset: 1

Views

Author

R. H. Hardin, Jan 30 2018

Keywords

Comments

Diagonal of A298970.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..1..0..1. .0..0..0..1..0. .0..0..1..1..0. .0..0..1..0..0
..0..0..1..0..0. .1..1..1..1..0. .1..1..0..1..0. .1..1..0..1..1
..1..0..0..0..1. .1..0..0..0..1. .1..1..1..1..1. .0..1..0..1..1
..1..1..1..1..0. .1..1..1..1..1. .0..1..0..0..1. .1..1..1..0..0
		

Crossrefs

Cf. A298970.
Showing 1-6 of 6 results.