A298973 Squarefree primitive abundant numbers (first definition: having only deficient proper divisors).
70, 1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830, 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 49742, 50505, 51765, 54285, 55965, 58695, 58786, 60214, 61215, 64155, 67298
Offset: 1
Keywords
Examples
The only squarefree primitive abundant number (SFPAN) with only 3 prime factors is a(1) = 2*5*7 = 70. Indeed, this number is abundant (sigma(70) - 70 = 1 + 2 + 5 + 7 + 10 + 14 + 35 = 74) but all of 2*5, 2*7 and 5*7 are deficient. This is also the smallest (thus primitive) weird number, see A002975. The A295369(4) = 18 SFPAN with 4 prime factors range from a(2) = 2*5*11*13 = 1430 to a(19) = 2*5*11*53 = 5830. The A295369(5) = 610 SFPAN with 5 prime factors range from a(20) = 3*5*7*11*13 = 15015 to a(755) = 2*5*11*59*647 = 4199030, but the first term with 6 prime factors occurs already at a(322) = 3*5*11*13*17*19 = 692835.
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, p. 115.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from M. F. Hasler)
- V. Siva Rama Prasad and D. Ram Reddy, On primitive unitary abundant numbers, Indian J. Pure Appl. Math., Vol. 21, No. 1 (1990), pp. 40-44.
- D. P. Shukla and Shikha Yadav, Composition of arithmetical functions with generalization of perfect and related numbers, Commentationes Mathematicae, Vol. 52, No. 2 (2012), pp. 153-170.
Crossrefs
Programs
-
Mathematica
spaQ[n_] := SquareFreeQ[n] && DivisorSigma[1, n] > 2*n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2*# &]; Select[Range[70000], spaQ] (* Amiram Eldar, Jul 18 2020 *)
-
PARI
is_A298973(n)=issquarefree(n)&&is_A071395(n)
Comments