A298976 Base-6 complementary numbers: n equals the product of the 6 complement (6-d) of its base-6 digits d.
3, 10, 18, 60, 80, 108, 360, 480, 648, 2160, 2880, 3888, 12960, 17280, 23328, 77760, 103680, 139968, 466560, 622080, 839808, 2799360, 3732480, 5038848, 16796160, 22394880, 30233088, 100776960, 134369280, 181398528, 604661760, 806215680, 1088391168
Offset: 1
Examples
3 = (6-3), therefore 3 is in the sequence. Denoting xyz[6] the base-6 expansion (i.e., x*6^2 + y*6 + z), we have: 10 = 14[6] = (6-1)*(6-4), therefore 10 is in the sequence. 18 = 30[6] = (6-3)*(6-0), therefore 18 is in the sequence. 80 = 212[6] = (6-2)*(6-1)*(6-2), therefore 80 is in the sequence. Since the expansion of 6*x in base 6 is that of x with a 0 appended, if x is in the sequence, then 6*x = x*(6-0) is in the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6).
Programs
-
Mathematica
LinearRecurrence[{0, 0, 6}, {3, 10, 18, 60, 80}, 50] (* Paolo Xausa, Jul 09 2025 *)
-
PARI
is(n,b=6)={n==prod(i=1,#n=digits(n,b),b-n[i])}
-
PARI
a(n)=if(n>5,a(n%3+3)*6^(n\3-1),[3,10,18,60,80][n])
-
PARI
Vec(x*(3 + 10*x + 18*x^2 + 42*x^3 + 20*x^4) / (1 - 6*x^3) + O(x^60)) \\ Colin Barker, Feb 09 2018
Formula
a(n+3) = 6 a(n) for all n >= 2.
G.f.: x*(3 + 10*x + 18*x^2 + 42*x^3 + 20*x^4) / (1 - 6*x^3). - Colin Barker, Feb 09 2018
Comments