cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298989 Number of partitions of n^4 into fourth powers > 1.

This page as a plain text file.
%I A298989 #10 Feb 16 2025 08:33:53
%S A298989 1,0,1,1,2,4,8,32,101,687,3584,23564,146424,937953,6006835,38521889,
%T A298989 247868209,1591813628,10234693956,65662254277,420757890998,
%U A298989 2688786485779,17134894394402,108819902923649,688544716659489,4339161392334630,27229261402800035,170114849290565556
%N A298989 Number of partitions of n^4 into fourth powers > 1.
%H A298989 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number</a>
%H A298989 <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F A298989 a(n) = [x^(n^4)] Product_{k>=2} 1/(1 - x^(k^4)).
%e A298989 a(4) = 2 because we have [256] and [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16].
%Y A298989 Cf. A000583, A046042, A092362, A259793, A298641, A298859.
%K A298989 nonn
%O A298989 0,5
%A A298989 _Ilya Gutkovskiy_, Jan 31 2018
%E A298989 a(21)-a(27) from _Alois P. Heinz_, Apr 18 2019