cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298994 Expansion of Product_{n>=1} (1 + (4*x)^n)^(1/2).

This page as a plain text file.
%I A298994 #24 Jun 07 2025 04:04:19
%S A298994 1,2,6,52,134,956,4124,20008,73158,439660,1874612,8350808,37583004,
%T A298994 169862616,779948152,3774085968,15435601222,69542934604,329825707332,
%U A298994 1403190752632,6313190864052,29079505547912,126937389732872,552273916408368,2477249228318748
%N A298994 Expansion of Product_{n>=1} (1 + (4*x)^n)^(1/2).
%H A298994 Seiichi Manyama, <a href="/A298994/b298994.txt">Table of n, a(n) for n = 0..1000</a>
%F A298994 Convolution inverse of A298993.
%F A298994 a(n) ~ 2^(2*n - 2) * exp(Pi*sqrt(n/6)) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 18 2018
%F A298994 Sum_{k=0..n} a(k)*a(n-k) = 4^n * A000009(n). - _Vaclav Kotesovec_, Jun 07 2025
%t A298994 CoefficientList[Series[Sqrt[QPochhammer[-1, 4*x]/2], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 18 2018 *)
%Y A298994 Cf. A271235, A298411, A298993, A303074, A370739.
%K A298994 nonn
%O A298994 0,2
%A A298994 _Seiichi Manyama_, Jan 31 2018