This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299018 #20 May 24 2020 04:24:32 %S A299018 1,2,2,6,11,6,24,60,60,24,120,366,501,366,120,720,2532,4242,4242,2532, %T A299018 720,5040,19764,38268,46863,38268,19764,5040,40320,172512,373104, %U A299018 528336,528336,373104,172512,40320,362880,1668528,3942108,6237828,7213761,6237828,3942108,1668528,362880 %N A299018 Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P(n) = n*(x + 1)*P(n - 1) - (n - 2)^2*x*P(n - 2). %F A299018 P(0) = 0, P(1) = 1 and P(n) = n * (x + 1) * P(n - 1) - (n - 2)^2 * x * P(n - 2). %e A299018 For n = 3, the polynomial is 6*x^2 + 11*x + 6. %e A299018 The first few polynomials, as a table: %e A299018 [1], %e A299018 [2, 2], %e A299018 [6, 11, 6], %e A299018 [24, 60, 60, 24], %e A299018 [120, 366, 501, 366, 120] %p A299018 P:= proc(n) option remember; expand(`if`(n<2, n, %p A299018 n*(x+1)*P(n-1)-(n-2)^2*x*P(n-2))) %p A299018 end: %p A299018 T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(P(n)): %p A299018 seq(T(n), n=1..12); # _Alois P. Heinz_, Jan 31 2018 %p A299018 A := proc(n,k) ## n >= 0 and k = 0 .. n %p A299018 option remember; %p A299018 if n = 0 and k = 0 then %p A299018 1 %p A299018 elif n > 0 and k >= 0 and k <= n then %p A299018 (n+1)*(A(n-1,k)+A(n-1,k-1))-(n-1)^2*A(n-2,k-1) %p A299018 else %p A299018 0 %p A299018 end if; %p A299018 end proc: # _Yu-Sheng Chang_, Apr 14 2020 %t A299018 P[n_] := P[n] = Expand[If[n < 2, n, n (x+1) P[n-1] - (n-2)^2 x P[n-2]]]; %t A299018 row[n_] := CoefficientList[P[n], x]; %t A299018 row /@ Range[12] // Flatten (* _Jean-François Alcover_, Dec 10 2019 *) %o A299018 (Sage) %o A299018 @cached_function %o A299018 def poly(n): %o A299018 x = polygen(ZZ, 'x') %o A299018 if n < 1: %o A299018 return x.parent().zero() %o A299018 elif n == 1: %o A299018 return x.parent().one() %o A299018 else: %o A299018 return n * (x + 1) * poly(n - 1) - (n - 2)**2 * x * poly(n - 2) %Y A299018 Very similar to A298854. %Y A299018 Row sums are A277382(n-1) for n>0. %Y A299018 Leftmost and rightmost columns are A000142. %Y A299018 Alternating row sums are A177145. %Y A299018 Alternating row sum of row 2*n+1 is A001818(n). %K A299018 tabl,nonn,easy %O A299018 1,2 %A A299018 _F. Chapoton_, Jan 31 2018