cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299025 a(n) = the fractional part of 1 / A003592(n) read backwards.

Original entry on oeis.org

0, 5, 52, 2, 521, 1, 5260, 50, 40, 52130, 520, 20, 526510, 5210, 10, 800, 5218700, 52600, 500, 400, 52609300, 521300, 5200, 200, 521359100, 6100, 5265100, 52100, 100, 5265679000, 8000, 52187000, 526000, 5000, 52182884000, 4000, 526093000, 23000, 5213000, 52000
Offset: 1

Views

Author

Rémy Sigrist, Feb 01 2018

Keywords

Comments

Numbers in this sequence that also appear in A003592, sorted, include the product of numbers k | 10^e with integer e >= 0 and 10^m with m >= e. For instance, the proper divisors of 10 {1, 2, 5} appear and {10, 20, 40, 50} follow, finally {100, 200, 400, 500, 800} followed by any product k 10^m with k = {1, 2, 4, 5, 8} and m >= 3. - Michael De Vlieger, Feb 03 2018

Examples

			The first terms, alongside A003592(n) and the fractional part of 1/A003592(n), are:
  n        a(n)  A003592(n)     frac(1/A003592(n))
  --       ----  ----------     ------------------
   1          0           1     0
   2          5           2     0.5
   3         52           4     0.25
   4          2           5     0.2
   5        521           8     0.125
   6          1          10     0.1
   7       5260          16     0.0625
   8         50          20     0.05
   9         40          25     0.04
  10      52130          32     0.03125
  11        520          40     0.025
  12         20          50     0.02
  13     526510          64     0.015625
  14       5210          80     0.0125
  15         10         100     0.01
  16        800         125     0.008
  17    5218700         128     0.0078125
  18      52600         160     0.00625
  19        500         200     0.005
  20        400         250     0.004
		

Crossrefs

Programs

  • Mathematica
    With[{e = 12}, Table[FromDigits@ Reverse@ PadLeft[#1, Length@ #1 + Abs@ #2] - 10 Boole[n == 1] & @@ RealDigits[1/n], {n, Sort@ Flatten@ Table[2^i*5^j, {i, 0, e}, {j, 0, Log[5, 2^(e - i)]}]}]] (* Michael De Vlieger, Feb 03 2018, after Robert G. Wilson v at A003592 *)
  • PARI
    mx = 4000; A003592 = vecsort(concat(vector(1+logint(mx,2), i, vector(1+logint(floor(mx/2^(i-1)), 5), j, 2^(i-1) * 5^(j-1)))))
    backward(n) = my (v=0, i=frac(1/n), r=1/10); while (i, v += r*floor(i); i=frac(i)*10; r*=10); v
    print (apply(backward, A003592))

Formula

a(A180953(n)) = 10^(n-1) for any n > 0.