cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299029 Triangle read by rows: Independent domination number for rectangular queens graph Q(n,m), 1 <= n <= m.

This page as a plain text file.
%I A299029 #18 Feb 16 2025 08:33:53
%S A299029 1,1,1,1,1,1,1,2,2,3,1,2,2,3,3,1,2,2,3,3,4,1,2,3,3,4,4,4,1,2,3,4,4,4,
%T A299029 5,5,1,2,3,4,4,4,5,5,5,1,2,3,4,4,4,5,5,5,5,1,2,3,4,4,5,5,6,5,5,5,1,2,
%U A299029 3,4,4,5,5,6,6,6,6,7,1,2,3,4,5,5,6,6,6,7,7,7,7,1,2,3,4,5,6,6,6,6,7,7,8,8,8
%N A299029 Triangle read by rows: Independent domination number for rectangular queens graph Q(n,m), 1 <= n <= m.
%C A299029 The queens graph Q(n X m) has the squares of the n X m chessboard as its vertices; two squares are adjacent if they are both in the same row, column, or diagonal of the board. A set D of squares of Q(n X m) is a dominating set for Q(n X m) if every square of Q(n X m) is either in D or adjacent to a square in D. The minimum size of an independent dominating set of Q(n X m) is the independent domination number, denoted by i(Q(n X m)).
%C A299029 Less formally, i(Q(n X m)) is the number of independent queens that are necessary and sufficient to all squares of the n X m chessboard be occupied or attacked.
%C A299029 Chessboards 8 X 11 and 18 X 11 are of special interest, because they cannot be dominated by 5 and 8 independent queens, respectively, although the larger boards 9 X 11, 10 X 11, 11 X 11 and 18 X 12 are. It is open how many such counterexamples of this kind of monotonicity exist.
%H A299029 Sandor Bozoki, <a href="/A299029/b299029.txt">First 18 rows of the triangle, formatted as a simple linear sequence n, a(n) for n = 1..171</a>
%H A299029 S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, <a href="http://arxiv.org/abs/1606.02060">Domination of the rectangular queens graph</a>, arXiv:1606.02060 [math.CO], 2016.
%H A299029 S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, <a href="http://www.sztaki.mta.hu/~bozoki/queens/">Domination of the rectangular queens graph</a>, 2016.
%H A299029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QueenGraph.html">Queen Graph</a>
%H A299029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QueensProblem.html">Queens Problem</a>
%e A299029 Table begins
%e A299029   m\n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18
%e A299029   ---+-----------------------------------------------------
%e A299029    1 | 1
%e A299029    2 | 1  1
%e A299029    3 | 1  1  1
%e A299029    4 | 1  2  2  3
%e A299029    5 | 1  2  2  3  3
%e A299029    6 | 1  2  2  3  3  4
%e A299029    7 | 1  2  3  3  4  4  4
%e A299029    8 | 1  2  3  4  4  4  5  5
%e A299029    9 | 1  2  3  4  4  4  5  5  5
%e A299029   10 | 1  2  3  4  4  4  5  5  5  5
%e A299029   11 | 1  2  3  4  4  5  5  6  5  5  5
%e A299029   12 | 1  2  3  4  4  5  5  6  6  6  6  7
%e A299029   13 | 1  2  3  4  5  5  6  6  6  7  7  7  7
%e A299029   14 | 1  2  3  4  5  6  6  6  6  7  7  8  8  8
%e A299029   15 | 1  2  3  4  5  6  6  7  7  7  7  8  8  9  9
%e A299029   16 | 1  2  3  4  5  6  6  7  7  7  8  8  8  9  9  9
%e A299029   17 | 1  2  3  4  5  6  7  7  7  8  8  8  9  9  9  9  9
%e A299029   18 | 1  2  3  4  5  6  7  7  8  8  9  8  9  9  9 10 10 10
%Y A299029 Diagonal elements are in A075324: Independent domination number for queens graph Q(n).
%Y A299029 Cf. A274138: Domination number for rectangular queens graph Q(n,m).
%Y A299029 Cf. A279404: Independent domination number for queens graph on an n X n toroidal board.
%K A299029 nonn,tabl
%O A299029 1,8
%A A299029 _Sandor Bozoki_, Feb 01 2018