cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299034 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k)^(n/k).

This page as a plain text file.
%I A299034 #8 Sep 08 2018 06:04:47
%S A299034 1,1,8,93,1544,32615,843264,25739539,906373376,36163950849,
%T A299034 1612483625600,79458277381901,4288069172500992,251520785449249927,
%U A299034 15932801526165085184,1084003570689331039875,78835487923639854792704,6103175938145968656408641,501114006272655771562911744
%N A299034 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k)^(n/k).
%H A299034 Vaclav Kotesovec, <a href="/A299034/b299034.txt">Table of n, a(n) for n = 0..300</a>
%F A299034 a(n) = n! * [x^n] exp(n*Sum_{k>=1} d(k)*x^k/k), where d(k) is the number of divisors of k (A000005).
%F A299034 a(n) ~ c * d^n * n^n, where d = 1.7257974131308983723949107467... and c = 0.693704376971941705824592525... - _Vaclav Kotesovec_, Sep 08 2018
%e A299034 The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(n/k) begins:
%e A299034 n = 0: (1), 0,   0,    0,     0,      0,       0,  ...
%e A299034 n = 1:  1, (1),  3,   11,    59,    339,    2629,  ...
%e A299034 n = 2:  1,  2,  (8),  40,   260,   1928,   17056,  ...
%e A299034 n = 3:  1,  3,  15,  (93),  711,   6237,   62901,  ...
%e A299034 n = 4:  1,  4,  24,  176, (1544), 15456,  174784,  ...
%e A299034 n = 5:  1,  5,  35,  295,  2915, (32615), 407725,  ...
%e A299034 n = 6:  1,  6,  48,  456,  5004,  61704, (843264), ...
%t A299034 Table[n! SeriesCoefficient[Product[1/(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 18}]
%Y A299034 Cf. A000005, A028342, A255672, A299033.
%K A299034 nonn
%O A299034 0,3
%A A299034 _Ilya Gutkovskiy_, Feb 01 2018