cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

This page as a plain text file.
%I A299045 #40 Jul 19 2024 08:46:46
%S A299045 1,1,0,1,-1,-1,1,-2,1,1,1,-3,5,-1,0,1,-4,11,-13,1,-1,1,-5,19,-41,34,
%T A299045 -1,1,1,-6,29,-91,153,-89,1,0,1,-7,41,-169,436,-571,233,-1,-1,1,-8,55,
%U A299045 -281,985,-2089,2131,-610,1,1,1,-9,71,-433,1926,-5741,10009,-7953,1597,-1,0
%N A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.
%C A299045 This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
%C A299045 For detailed theory, see [Hone].
%C A299045 The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - _Michael Somos_, Jun 19 2023
%H A299045 Robert Price, <a href="/A299045/b299045.txt">Table of n, a(n) for n = 1..5050</a>
%H A299045 Andrew N. W. Hone, et al., <a href="https://arxiv.org/abs/1802.01793">On a family of sequences related to Chebyshev polynomials</a>, arXiv:1802.01793 [math.NT], 2018.
%F A299045 G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
%F A299045 A(n, k) = B(-n, k) where B = A294099. - _Michael Somos_, Jun 19 2023
%e A299045 Array begins:
%e A299045 1   0  -1     1     0      -1       1         0        -1           1
%e A299045 1  -1   1    -1     1      -1       1        -1         1          -1
%e A299045 1  -2   5   -13    34     -89     233      -610      1597       -4181
%e A299045 1  -3  11   -41   153    -571    2131     -7953     29681     -110771
%e A299045 1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
%e A299045 1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
%e A299045 1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
%e A299045 1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
%e A299045 1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
%e A299045 1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
%t A299045 (* Array: *)
%t A299045 Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
%t A299045 (*Array antidiagonals flattened (gives this sequence):*)
%t A299045 A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
%o A299045 (PARI) {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* _Michael Somos_, Jun 19 2023 */
%Y A299045 Cf. A285992, A299107, A299109, A088165, A117522, A299100, A299101, A113501, A269251, A269252, A269253, A269254, A294099, A298675, A298677, A298878, A299045, A299071.
%Y A299045 Cf. A094954 (unsigned version of this array, but missing the first row).
%Y A299045 Cf. Rows: A057078, A033999, A099496, A079935 (or A001835), A004253, A001653, A049685, A070997, A070998, A138288 (or A072256), ...
%Y A299045 Cf. Columns: A000012, A001477 (A000027), A110331 (A165900), A123972, A192398, ...
%K A299045 sign,tabl
%O A299045 1,8
%A A299045 _L. Edson Jeffery_, _Bob Selcoe_ and _Andrew Hone_, Feb 01 2018