A299070 Regular triangle T(n,k) is the number of compositions of n whose standard factorization into Lyndon words has k distinct factors.
1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 7, 9, 0, 0, 0, 13, 17, 2, 0, 0, 0, 19, 39, 6, 0, 0, 0, 0, 35, 72, 21, 0, 0, 0, 0, 0, 59, 141, 55, 1, 0, 0, 0, 0, 0, 107, 266, 132, 7, 0, 0, 0, 0, 0, 0, 187, 511, 300, 26, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 2 0 3 1 0 5 3 0 0 7 9 0 0 0 13 17 2 0 0 0 19 39 6 0 0 0 0 35 72 21 0 0 0 0 0 59 141 55 1 0 0 0 0 0 107 266 132 7 0 0 0 0 0 0 187 511 300 26 0 0 0 0 0 0 0. The a(5,2) = 9 compositions are (41), (32), (311), (131), (221), (212), (2111), (1211), (1121) with factorizations (41) = (4) * (1) (32) = (3) * (2) (311) = (3) * (1)^2 (131) = (13) * (1) (221) = (2)^2 * (1) (212) = (2) * (12) (2111) = (2) * (1)^3 (1211) = (12) * (1)^2 (1121) = (112) * (1).
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Union[qit[#]]]===k&]],{n,11},{k,n}]
Comments