This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299072 #15 May 04 2021 10:42:47 %S A299072 1,2,3,1,5,3,7,9,13,17,2,19,39,6,35,72,21,59,141,55,1,107,266,132,7, %T A299072 187,511,300,26,351,952,660,85,631,1827,1395,240,3,1181,3459,2901,636, %U A299072 15,2191,6595,5977,1554,67,4115,12604,12123,3698,228,7711,24173,24504 %N A299072 Sequence is an irregular triangle read by rows with zeros removed where T(n,k) is the number of compositions of n whose standard factorization into Lyndon words has k distinct factors. %C A299072 Row sums are 2^(n-1). First column is A008965. A regular version is A299070. %H A299072 Andrew Howroyd, <a href="/A299072/b299072.txt">Table of n, a(n) for n = 1..1196</a> %e A299072 Triangle begins: %e A299072 1 %e A299072 2 %e A299072 3 1 %e A299072 5 3 %e A299072 7 9 %e A299072 13 17 2 %e A299072 19 39 6 %e A299072 35 72 21 %e A299072 59 141 55 1 %e A299072 107 266 132 7 %e A299072 187 511 300 26 %t A299072 LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; %t A299072 qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]]; %t A299072 DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Union[qit[#]]]===k&]],{n,11},{k,n}],0,{2}] %o A299072 (PARI) \\ here b(n) is A059966. %o A299072 b(n)={sumdiv(n, d, moebius(n/d) * (2^d-1))/n} %o A299072 A(n)=[Vecrev(p/y) | p<-Vec(prod(k=1, n, (1 - y + y/(1-x^k) + O(x*x^n))^b(k))-1)] %o A299072 my(T=A(15)); for(n=1, #T, print(T[n])) \\ _Andrew Howroyd_, Dec 08 2018 %Y A299072 Cf. A001045, A001221, A008965, A059966, A116608, A146289, A185700, A296373, A299070. %K A299072 nonn,tabf %O A299072 1,2 %A A299072 _Gus Wiseman_, Feb 01 2018