cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299090 Number of "digits" in the binary representation of the multiset of prime factors of n.

This page as a plain text file.
%I A299090 #27 Apr 11 2025 10:32:15
%S A299090 0,1,1,2,1,1,1,2,2,1,1,2,1,1,1,3,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,3,1,1,
%T A299090 1,2,1,1,1,2,1,1,1,2,2,1,1,3,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,3,1,1,1,2,
%U A299090 1,1,1,2,1,1,2,2,1,1,1,3,3,1,1,2,1,1,1,2,1,2,1,2,1,1,1,3,1,2,2,2,1,1,1,2,1
%N A299090 Number of "digits" in the binary representation of the multiset of prime factors of n.
%C A299090 a(n) is also the binary weight of the largest multiplicity in the multiset of prime factors of n.
%C A299090 Any finite multiset m has a unique binary representation as a finite word bin(m) = s_k..s_1 such that: (1) each "digit" s_i is a finite set, (2) the leading term s_k is nonempty, and (3) m = 1*s_1 + 2*s_2 + 4*s_3 + 8*s_4 + ... + 2^(k-1)*s_k where + is multiset union, 1*S = S as a multiset, and n*S = 1*S + (n-1)*S for n > 1. The word bin(m) can be thought of as a finite 2-adic set. For example,
%C A299090 bin({1,1,1,1,2,2,3,3,3}) = {1}{2,3}{3},
%C A299090 bin({1,1,1,1,1,2,2,2,2}) = {1,2}{}{1},
%C A299090 bin({1,1,1,1,1,2,2,2,3}) = {1}{2}{1,2,3}.
%C A299090 a(n) is the least k such that columns indexed k or greater in A329050 contain no divisors of n. - _Peter Munn_, Feb 10 2020
%H A299090 Antti Karttunen, <a href="/A299090/b299090.txt">Table of n, a(n) for n = 1..65537</a>
%H A299090 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A299090 a(n) = A070939(A051903(n)), n>1.
%F A299090 If m is a set then bin(m) has only one "digit" m; so a(n) = 1 if n is squarefree.
%F A299090 If m is of the form n*{x} then bin(m) is obtained by listing the binary digits of n and replacing 0 -> {}, 1 -> {x}; so a(p^n) = binary weight of n.
%F A299090 a(n) = A061395(A225546(n)). - _Peter Munn_, Feb 10 2020
%F A299090 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} (1 - 1/zeta(2^k)) = 1.47221057635756400916... . - _Amiram Eldar_, Jan 05 2024
%e A299090 36 has prime factors {2,2,3,3} with binary representation {2,3}{} so a(36) = 2.
%e A299090 Binary representations of the prime multisets of each positive integer begin: {}, {2}, {3}, {2}{}, {5}, {2,3}, {7}, {2}{2}, {3}{}, {2,5}, {11}, {2}{3}, {13}, {2,7}, {3,5}, {2}{}{}.
%t A299090 Table[If[n===1,0,IntegerLength[Max@@FactorInteger[n][[All,2]],2]],{n,100}]
%o A299090 (PARI)
%o A299090 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
%o A299090 A299090(n) = if(1==n,0,#binary(A051903(n))); \\ _Antti Karttunen_, Jul 29 2018
%o A299090 (Python)
%o A299090 from sympy import factorint
%o A299090 def A299090(n): return max(factorint(n).values(),default=0).bit_length() # _Chai Wah Wu_, Apr 11 2025
%Y A299090 Cf. A001511, A051903, A052409, A070939, A112798, A329050.
%Y A299090 Related to A061395 via A225546.
%K A299090 nonn,base
%O A299090 1,4
%A A299090 _Gus Wiseman_, Feb 02 2018
%E A299090 More terms from _Antti Karttunen_, Jul 29 2018