This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299098 #24 May 02 2020 16:07:39 %S A299098 0,1,2,6,25,113,548,2770,14426,76851,416848,2294224,12780394,71924647, %T A299098 408310668,2335443077,13446130438,77863375126,453203435319, %U A299098 2649957419351,15558520126830,91687179000949,542139459641933,3215484006733932,19125017153077911 %N A299098 Number of rooted identity trees with 2n nodes. %H A299098 Alois P. Heinz, <a href="/A299098/b299098.txt">Table of n, a(n) for n = 0..1253</a> %F A299098 a(n) = A004111(2*n). %e A299098 a(3) = 6: %e A299098 o o o o o o %e A299098 | | | / \ / \ / \ %e A299098 o o o o o o o o o %e A299098 | | / \ | | | / \ %e A299098 o o o o o o o o o %e A299098 | / \ | | | | %e A299098 o o o o o o o %e A299098 | | | | %e A299098 o o o o %e A299098 | %e A299098 o %p A299098 with(numtheory): %p A299098 b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add( %p A299098 b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1)) %p A299098 end: %p A299098 a:= n-> b(2*n): %p A299098 seq(a(n), n=0..30); %t A299098 b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; %t A299098 a[n_] := b[2*n]; %t A299098 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 18 2018, after _Alois P. Heinz_ *) %o A299098 (Python) %o A299098 from sympy import divisors %o A299098 from sympy.core.cache import cacheit %o A299098 @cacheit %o A299098 def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1) %o A299098 def a(n): return b(2*n) %o A299098 print([a(n) for n in range(31)]) # _Indranil Ghosh_, Mar 02 2018, after Maple program %Y A299098 Bisection of A004111 (even part). %Y A299098 Cf. A100034, A299039, A299113. %K A299098 nonn %O A299098 0,3 %A A299098 _Alois P. Heinz_, Feb 02 2018