cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299105 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)).

This page as a plain text file.
%I A299105 #9 Jan 18 2020 11:33:37
%S A299105 1,1,0,-2,-3,-1,5,10,7,-9,-29,-30,10,77,108,22,-184,-351,-207,372,
%T A299105 1041,969,-516,-2835,-3655,-284,6990,12190,5977,-14957,-37044,-30994,
%U A299105 24144,103374,122409,-7715,-262704,-420585,-162274,589068,1309674,972747,-1057935,-3742955
%N A299105 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)).
%H A299105 Seiichi Manyama, <a href="/A299105/b299105.txt">Table of n, a(n) for n = 0..5000</a>
%H A299105 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A299105 G.f.: 1/(1 - x*Product_{k>=1} (1 - x^k)).
%F A299105 a(0) = 1; a(n) = Sum_{k=1..n} A010815(k-1)*a(n-k).
%t A299105 nmax = 43; CoefficientList[Series[1/(1 - x Product[1 - x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%t A299105 nmax = 43; CoefficientList[Series[1/(1 - x QPochhammer[x, x]), {x, 0, nmax}], x]
%Y A299105 Antidiagonal sums of A286354.
%Y A299105 Cf. similar sequences: A067687, A299106, A299208, A302017, A318581, A318582, A331484.
%Y A299105 Cf. A010815, A299108.
%K A299105 sign
%O A299105 0,4
%A A299105 _Ilya Gutkovskiy_, Feb 02 2018