cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300334 Primes of a056240-type 2.

Original entry on oeis.org

211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4441, 4561, 4751, 4783, 4813, 4861, 5147, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6637, 6883, 7103, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 8419, 8443, 8641, 8923, 9091, 9587, 9643, 9733, 9781, 9871, 10513
Offset: 1

Views

Author

David James Sycamore, Mar 03 2018

Keywords

Comments

Prime(r) has a056240-type k if A295185(prime(r))=prime(r-k)*A056240(prime(r)-prime(r-k)).
This sequence lists primes having a056240-type k=2, each having form ~2(g1,g2) where g1 is the first gap below prime(r), and g2 is the second (notation explained in A295185). The majority of primes appear to be of a056240-type 1.

Examples

			211 is included because the smallest composite number whose sum of prime factors (with repetition)=211 is 6501=197*33, a multiple of the second prime below 211, not the first. 211~2(12,2) is the smallest prime to have this property. Likewise 541~2(18,2), 1693~2(24,2), 2879~2(18,4), etc.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Mar 10 2018

A299704 List of primes prime(r) such that prime(r)-prime(r-1)=30, prime(r-1)-prime(r-2)=8 and prime(r-2)-prime(r-3)=6.

Original entry on oeis.org

4327, 91621, 111697, 123001, 190027, 240997, 243517, 244291, 300277, 309667, 315937, 317827, 362137, 393517, 440131, 457087, 467587, 517861, 554167, 567097, 590071, 609571, 617917, 640771, 651727, 653311, 719101, 776551, 788071, 793591, 804157, 809491, 812431, 850177, 861391, 1007857, 1070287
Offset: 1

Views

Author

David James Sycamore, Feb 17 2018

Keywords

Comments

These are the primes of a056240-type 3(30,8,6); k=3 (see definition in A293652).
A prime of a056240-type 3 is a prime, prime(r)>3, such that prime(r-3) is the greatest prime factor of the smallest composite number whose prime divisors (with multiplicity) sum to prime(r).
Conjecture: Sequence has infinitely many terms.
Note: p~3(30,8,6) is one particular form of a prime of a056240-type 3; there are others, e.g., 3(30,12,2), 3(24,6,2), 3(36,6,4), 3(38,10,2), etc. All such prime sequences are also conjectured to produce infinitely many terms.
All terms == 1 (mod 3). - Robert Israel, May 13 2020

Examples

			a(1)=4327=prime(591), the first prime of a056240-type 3. Prime(590)=4297, prime(589)=4289, prime(588)=4283. 4327-4297=30, 4297-4289=8, 4289-4283=6.
		

Crossrefs

Programs

  • Maple
    N:=2000000:
    for X from 100 to N do
    if isprime(X) then
    A:=prevprime(X);
    B:=prevprime(A);
    C:=prevprime(B);
    a:=X-A;
    b:=A-B;
    c:=B-C;
    if a=30 and b=8 and c=6 then print(X);
    end if
    end if
    end if
    end do
  • Mathematica
    With[{s = Partition[Prime@ Range[10^5], 4, 1]}, Select[s, Differences@ # == {6, 8, 30} &][[All, -1]]] (* Michael De Vlieger, Feb 18 2018 *)

Formula

For every prime(r) in this sequence A288814(prime(r)) = prime(r-3)*A056240(prime(r) - prime(r-3)) = prime(r-3)*A288814(prime(r) - prime(r-3)).
Showing 1-2 of 2 results.