This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299113 #17 May 02 2020 16:40:12 %S A299113 1,1,3,12,52,247,1226,6299,33209,178618,976296,5407384,30283120, %T A299113 171196956,975662480,5599508648,32334837886,187737500013, %U A299113 1095295264857,6417886638389,37752602033079,222861754454841,1319834477009635,7839314017612273,46688045740233741 %N A299113 Number of rooted identity trees with 2n+1 nodes. %H A299113 Alois P. Heinz, <a href="/A299113/b299113.txt">Table of n, a(n) for n = 0..1253</a> %F A299113 a(n) = A004111(2n+1). %e A299113 a(2) = 3: %e A299113 o o o %e A299113 | | / \ %e A299113 o o o o %e A299113 | / \ | %e A299113 o o o o %e A299113 | | | %e A299113 o o o %e A299113 | %e A299113 o %p A299113 with(numtheory): %p A299113 b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add( %p A299113 b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1)) %p A299113 end: %p A299113 a:= n-> b(2*n+1): %p A299113 seq(a(n), n=0..30); %t A299113 b[n_] := b[n] = If[n < 2, n, Sum[b[n - k]*Sum[b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)]; %t A299113 a[n_] := b[2*n + 1]; %t A299113 Array[a, 30, 0] (* _Jean-François Alcover_, May 30 2019, from Maple *) %o A299113 (Python) %o A299113 from sympy import divisors %o A299113 from sympy.core.cache import cacheit %o A299113 @cacheit %o A299113 def b(n): return n if n<2 else sum([b(n-k)*sum([b(d)*d*(-1)**(k//d+1) for d in divisors(k)]) for k in range(1, n)])//(n-1) %o A299113 def a(n): return b(2*n+1) %o A299113 print([a(n) for n in range(31)]) # _Indranil Ghosh_, Mar 02 2018 %Y A299113 Bisection of A004111 (odd part). %Y A299113 Cf. A100427, A299098. %K A299113 nonn %O A299113 0,3 %A A299113 _Alois P. Heinz_, Feb 02 2018