This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299114 #23 Feb 16 2025 08:33:53 %S A299114 3,4,5,6,8,10 %N A299114 Number of sides of a face of an Archimedean solid. %C A299114 Values of n for which the regular n-gon is a face of some Archimedean solid. %C A299114 Remarkably, the same is true for Johnson solids. Indeed, before Johnson (1966) and Zalgaller (1967) classified the 92 Johnson solids, Grünbaum and Johnson (1965) proved that the only polygons that occur as faces of a non-uniform regular-faced convex polyhedron (i.e., a Johnson solid) are triangles, squares, pentagons, hexagons, octagons, and decagons. %H A299114 Branko Grünbaum, Norman Johnson, <a href="https://doi.org/10.1112/jlms/s1-40.1.577">The faces of a regular-faced polyhedron</a>, J. Lond. Math. Soc. 40, 577-586 (1965). %H A299114 Norman W. Johnson, <a href="http://dx.doi.org/10.4153/CJM-1966-021-8">Convex Polyhedra with Regular Faces</a>, Canadian Journal of Mathematics, 18 (1966), 169-200. %H A299114 Joseph Malkevitch, <a href="https://www.ams.org/publicoutreach/feature-column/fc-2018-01">Regular-Faced Polyhedra: Remembering Norman Johnson</a>, AMS Feature Column, Jan. 2018. %H A299114 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArchimedeanSolid.html">Archimedean Solid</a> %H A299114 Wikipedia, <a href="http://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a> %H A299114 Victor A. Zalgaller, <a href="http://mi.mathnet.ru/eng/znsl1408">Convex Polyhedra with Regular Faces</a>, Zap. Nauchn. Sem. LOMI, 1967, Volume 2. Pages 5-221 (Mi znsl1408). %Y A299114 Cf. A092536, A092537, A092538, A242731, A242732, A242733. %K A299114 nonn,fini,full %O A299114 1,1 %A A299114 _Jonathan Sondow_, Feb 02 2018