This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299144 #30 Nov 24 2024 20:15:27 %S A299144 5,10,18,30,30,30,30,180,180,180,180,840,840,1260,1260,1260,1260, %T A299144 24480,24480,63000,63000,63000,63000,63000,63000,63000,63000,63000, %U A299144 63000,356400,356400,356400,356400,356400,356400,356400,356400,5783400,5783400,5783400,5783400,5783400,5783400 %N A299144 a(n) is the least i such that gcd(Fibonacci(i), i+x) > 1 for all x=0..n. %e A299144 5 is the smallest integer i such that gcd(F(i), i) > 1, because F(5)=5. Therefore a(0)=5. %e A299144 10 is the smallest integer i such that gcd(F(i), i) > 1 and gcd(F(i), i+1) > 1, because F(10)=55, not coprime to 10 nor 11. Therefore a(1)=10. %t A299144 Nest[Function[a, Append[a, SelectFirst[Range[10^5], Function[i, AllTrue[i + Range[0, Length@ a], ! CoprimeQ[Fibonacci@ i, #] &]]]]], {}, 29] (* _Michael De Vlieger_, Feb 05 2018 *) %o A299144 (Python) %o A299144 p0=0 %o A299144 p1=1 %o A299144 def GCD(x,y): %o A299144 tmp = y %o A299144 y = x % y %o A299144 if y==0: return tmp %o A299144 return GCD(tmp, y) %o A299144 n=0 %o A299144 for i in range(1,1000000): %o A299144 p0,p1 = p1, p0+p1 %o A299144 for x in range(1000000): %o A299144 if GCD(p0,i+x)==1: break %o A299144 for j in range(n, x): %o A299144 print(i) %o A299144 if x>n: n=x %o A299144 (PARI) isok(k, n) = {for (x=0, n, if (gcd(fibonacci(k), k+x) == 1, return(0));); return(1);} %o A299144 a(n) = {my(k=1); while (!isok(k,n), k++); k;} \\ _Michel Marcus_, Feb 05 2018 %Y A299144 Cf. A000045, A104714. %K A299144 nonn %O A299144 0,1 %A A299144 _Alex Ratushnyak_, Feb 03 2018 %E A299144 a(29)-a(36) from _Michael De Vlieger_, Feb 05 2018 %E A299144 a(37)-a(42) from _Jon E. Schoenfield_, Apr 24 2018