A299145 Primes of the form j^k + (j-1)^k + ... + 2^k, for j > 1 and k > 0.
2, 5, 13, 29, 97, 139, 353, 4889, 72353, 353815699, 42065402653, 84998999651, 102769130749, 15622297824266188673, 28101527071305611527, 20896779938941631284493075599148668795944697935466419104293, 105312291668560568089831550410013687058921146068446092937783402353
Offset: 1
Keywords
Examples
2 = 2^1; 5 = 3^1 + 2^1; 13 = 3^2 + 2^2; 29 = 4^2 + 3^2 + 2^2; 97 = 3^4 + 2^4; 139 = 7^2 + 6^2 + 5^2 + 4^2 + 3^2 + 2^2; 353 = 4^4 + 3^4 + 2^4; 4889 = 4^6 + 3^6 + 2^6; 72353 = 4^8 + 3^8 + 2^8;
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..45 (all terms < 10^1000).
Programs
-
Mathematica
With[{nn = 350}, Sort@ Flatten@ Map[Select[#, PrimeQ] &, Table[Total[Range[j, 1, -1]^k] - 1, {j, 2, nn}, {k, nn - j}]]] (* Michael De Vlieger, Feb 03 2018 *)
-
PARI
limit=100000; v=vector(limit); for(n=1, ceil((-1+(1+8*limit)^(1/2))/2), for(k=1, logint(limit, n+0^(n-1)), a=sum(i=1,n,i^k)-1;if(isprime(a)&&a
Extensions
a(10)-a(15) from Michael De Vlieger, Feb 03 2018
a(16)-a(17) from Chai Wah Wu, Mar 07 2018
Comments