This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299147 #36 Mar 02 2025 14:33:43 %S A299147 4,64,289,253541929,499477801,1260747049,14450203681,25391466409, %T A299147 256221229489,333456586849,341122579249,459926756041,911087431081, %U A299147 928731181849,1142288550841,2880002461249,2923070670601,3000305515321,4103999343889,4123226708329,4258977385441 %N A299147 Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes. %C A299147 All terms are squares (proof in A023194). %C A299147 Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16). %H A299147 Chai Wah Wu, <a href="/A299147/b299147.txt">Table of n, a(n) for n = 1..12775</a> (n = 1..997 from Robert G. Wilson v) %e A299147 4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes. %p A299147 N:= 10^14: # to get all terms <= N %p A299147 Res:= NULL: %p A299147 p:= 1: %p A299147 do %p A299147 p:= nextprime(p); %p A299147 if p^2 > N then break fi; %p A299147 for k from 2 by 2 while p^k <= N do %p A299147 if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then %p A299147 q1:= (p^(k+1)-1)/(p-1); %p A299147 q2:= (p^(2*k+1)-1)/(p-1); %p A299147 q3:= (p^(3*k+1)-1)/(p-1); %p A299147 if isprime(q1) and isprime(q2) and isprime(q3) then %p A299147 Res:= Res, p^k; %p A299147 fi %p A299147 fi %p A299147 od %p A299147 od: %p A299147 sort([Res]); # _Robert Israel_, Feb 22 2018 %t A299147 k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* _Robert G. Wilson v_, Feb 10 2018 *) %o A299147 (Magma) [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))]; %o A299147 (PARI) isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ _Michel Marcus_, Feb 05 2018 %Y A299147 Subsequence of A232444. %Y A299147 Cf. A000203, A055638, A279094, A279096, A299153. %K A299147 nonn %O A299147 1,1 %A A299147 _Jaroslav Krizek_, Feb 03 2018