This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299148 #27 Mar 02 2025 14:33:50 %S A299148 2,2,4,2,25,2,262144,4,4,64,734449,2,3100870943041,9066121,4,2,729,2, %T A299148 214355670008317962105386619478205641151753401,5041,64,16,25, %U A299148 10651330026288961,16610312161,2607021481,38950081,1817762776525603445521,5331481,2,2160067977820518171249529658520145004718584607049,21203610154988994565561 %N A299148 a(n) is the smallest number k such that sigma(k) and sigma(k^n) are both primes. %C A299148 Sequence b(n) of the smallest numbers m such that sigma(m^k) are all primes for k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be bigger than 10^16). %C A299148 a(n) is of the form p^e where p, e+1 and e*n+1 are primes. e=1 is possible only in the case p=2. - _Robert Israel_, Feb 06 2018 %H A299148 Robert Israel, <a href="/A299148/b299148.txt">Table of n, a(n) for n = 1..79</a> %F A299148 a(n) >= A279094(n). %e A299148 For n = 3; a(3) = 4 because 4 is the smallest number such that sigma(4) = 7 and sigma(4^3) = 127 are both primes. %p A299148 f:= proc(n,Nmin,Nmax) local p, e, M, Res; %p A299148 M:= Nmax; %p A299148 Res:= -1; %p A299148 e:= 0; %p A299148 do %p A299148 e:= nextprime(e+1)-1; %p A299148 if 2^e > M then return Res fi; %p A299148 if not isprime(e*n+1) then next fi; %p A299148 p:= floor(Nmin^(1/e)); %p A299148 do %p A299148 p:= nextprime(p); %p A299148 if p^e > M then break fi; %p A299148 if e = 1 and p > 2 then break fi; %p A299148 if isprime((p^(e+1)-1)/(p-1)) and isprime((p^(e*n+1)-1)/(p-1)) then %p A299148 Res:= p^e; %p A299148 M:= p^e; %p A299148 break %p A299148 fi %p A299148 od %p A299148 od; %p A299148 end proc: %p A299148 g:= proc(n) local Nmin,Nmax, v; %p A299148 Nmax:= 1; %p A299148 do %p A299148 Nmin:= Nmax; %p A299148 Nmax:= Nmax*10^3; %p A299148 v:= f(n,Nmin,Nmax); %p A299148 if v > 0 then return v fi; %p A299148 od; %p A299148 end proc: %p A299148 seq(g(n),n=1..50); # _Robert Israel_, Feb 06 2018 %t A299148 Array[Block[{k = 2}, While[! AllTrue[DivisorSigma[1, #] & /@ {k, k^#}, PrimeQ], k++]; k] &, 10] (* _Michael De Vlieger_, Feb 05 2018 *) %o A299148 (Magma) [Min([n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^k))]): k in [2..12]]; %o A299148 (PARI) a(n) = {my(k=1); while (!(isprime(sigma(k)) && isprime(sigma(k^n))), k++); k;} \\ _Michel Marcus_, Feb 05 2018 %Y A299148 Cf. A000203, A279094. %K A299148 nonn %O A299148 1,1 %A A299148 _Jaroslav Krizek_, Feb 03 2018 %E A299148 a(13) to a(32) from _Robert Israel_, Feb 06 2018