cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).

This page as a plain text file.
%I A299152 #11 Jul 29 2018 20:48:57
%S A299152 1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,
%T A299152 1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,16,1,1,1,1,
%U A299152 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1
%N A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
%H A299152 Antti Karttunen, <a href="/A299152/b299152.txt">Table of n, a(n) for n = 1..65537</a>
%e A299152 Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
%t A299152 nn=50;
%t A299152 sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
%t A299152 Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
%o A299152 (PARI)
%o A299152 up_to = 65537;
%o A299152 prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1,up_to, vmemo[n] = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d<n),vmemo[d]*vmemo[n/d],0)))/2)); (vmemo); };
%o A299152 v299151perA299152 = prepareA299151perA299152(up_to);
%o A299152 A299151perA299152(n) = v299151perA299152[n];
%o A299152 \\ Or without memoization as:
%o A299152 A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d<n),A299151perA299152(d)*A299151perA299152(n/d),0)))/2);
%o A299152 A299152(n) = denominator(A299151perA299152(n)); \\ _Antti Karttunen_, Jul 29 2018
%Y A299152 Cf. A000005, A000010, A000740, A018804, A023900, A029935, A034691, A046643, A059966, A228369, A257098, A296302, A298971, A299119, A299149, A299151.
%K A299152 nonn,frac
%O A299152 1,4
%A A299152 _Gus Wiseman_, Feb 03 2018
%E A299152 More terms from _Antti Karttunen_, Jul 29 2018