This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299156 #26 Feb 07 2018 11:55:02 %S A299156 1,256,397,1197,8053,8736,9901,32173,33493,33757,38461,48757,56101, %T A299156 57073,64153,76561,79693,87517,100608,102217,105253,105601,105913, %U A299156 105997,107713,108553,110976,116293,123121,131437,138517,143137,147541,151237,156601,171253 %N A299156 Numbers k such that k*(k+1) divides tribonacci(k) (A000073(k)). %C A299156 A subsequence of A232570. %H A299156 Chai Wah Wu, <a href="/A299156/b299156.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..1000 from Alois P. Heinz) %e A299156 tribonacci(256) = 10285895715599251294835119279496333059462348558276025598603904254464 = 256 * 257 * 156339611436029476149609668037091638184921397104146789862048642. %p A299156 with(LinearAlgebra[Modular]): %p A299156 T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>, %p A299156 <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]: %p A299156 a:= proc(n) option remember; local i, k, ok; %p A299156 if n=1 then 1 else %p A299156 for k from 1+a(n-1) do ok:= true; %p A299156 for i in ifactors(k*(k+1))[2] while ok do %p A299156 ok:= is(T(k, i[1]^i[2])=0) %p A299156 od; if ok then break fi %p A299156 od; k %p A299156 fi %p A299156 end: %p A299156 seq(a(n), n=1..10); # _Alois P. Heinz_, Feb 06 2018 %t A299156 a = b = 0; c = d = 1; k = 2; lst = {1}; While[k < 171255, If[ Mod[c, k (k + 1)] == 0, AppendTo[lst, k]]; a = b; b = c; c = d; d = a + b + c; k++] (* _Robert G. Wilson v_, Feb 07 2018 *) %Y A299156 Cf. A000073, A217738, A232570, A274518. %K A299156 nonn %O A299156 1,2 %A A299156 _Seiichi Manyama_, Feb 04 2018