cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299162 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - k*x^k)).

This page as a plain text file.
%I A299162 #8 Mar 15 2018 15:33:20
%S A299162 1,1,2,6,17,49,135,380,1051,2925,8119,22548,62574,173767,482360,
%T A299162 1339126,3717700,10321163,28653557,79548612,220843925,613110573,
%U A299162 1702128034,4725475979,13118945083,36421037100,101112695940,280710759278,779313926949,2163544401343,6006468273440
%N A299162 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - k*x^k)).
%H A299162 Alois P. Heinz, <a href="/A299162/b299162.txt">Table of n, a(n) for n = 0..2256</a>
%H A299162 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A299162 G.f.: 1/(1 - x*Product_{k>=1} 1/(1 - k*x^k)).
%F A299162 a(0) = 1; a(n) = Sum_{k=1..n} A006906(k-1)*a(n-k).
%t A299162 nmax = 30; CoefficientList[Series[1/(1 - x Product[1/(1 - k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A299162 Antidiagonal sums of A297328.
%Y A299162 Cf. A006906, A067687, A299105, A299106, A299108, A299164, A299166, A299167.
%K A299162 nonn
%O A299162 0,3
%A A299162 _Ilya Gutkovskiy_, Feb 04 2018