cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299164 Expansion of 1/(1 - x*Product_{k>=1} (1 + k*x^k)).

This page as a plain text file.
%I A299164 #7 Feb 25 2018 09:43:34
%S A299164 1,1,2,5,14,35,91,233,597,1517,3885,9922,25333,64683,165181,421828,
%T A299164 1077277,2750993,7025168,17940298,45814165,116996152,298774246,
%U A299164 762982615,1948434235,4975732669,12706571546,32448880807,82864981016,211613009498,540397935771,1380018797044,3524165721799
%N A299164 Expansion of 1/(1 - x*Product_{k>=1} (1 + k*x^k)).
%H A299164 Alois P. Heinz, <a href="/A299164/b299164.txt">Table of n, a(n) for n = 0..1000</a>
%H A299164 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A299164 G.f.: 1/(1 - x*Product_{k>=1} (1 + k*x^k)).
%F A299164 a(0) = 1; a(n) = Sum_{k=1..n} A022629(k-1)*a(n-k).
%t A299164 nmax = 32; CoefficientList[Series[1/(1 - x Product[1 + k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A299164 Antidiagonal sums of A297321.
%Y A299164 Cf. A022629, A067687, A299105, A299106, A299108, A299162, A299166, A299167.
%K A299164 nonn
%O A299164 0,3
%A A299164 _Ilya Gutkovskiy_, Feb 04 2018