A299170 List of integer triples (b,c,d) where b > c > d are coprime and 1/b^2 + 1/c^2 + 1/d^2 = 1/r^2 and r is an integer, ordered by b then c.
156, 65, 45, 156, 80, 65, 255, 136, 90, 255, 160, 136, 609, 580, 315, 609, 580, 560, 1295, 444, 315, 1295, 560, 444, 1428, 221, 91, 1560, 1547, 170, 1640, 369, 270, 1640, 480, 369, 1833, 884, 799, 1924, 663, 629, 2385, 1484, 945, 2385, 1680, 1484, 2925, 1100, 429
Offset: 1
Examples
1/156^2 + 1/65^2 + 1/45^2 = 1/36^2 = 1/(12*3)^2. As an array, sequence begins: 156, 65, 45 156, 80, 65, 255, 136, 90, 255, 160, 136, 609, 580, 315, 609, 580, 560, 1295, 444, 315, 1295, 560, 444, 1428, 221, 91, 1560, 1547, 170, 1640, 369, 270, 1640, 480, 369, 1833, 884, 799, 1924, 663, 629, ...
Links
- Giovanni Resta, Table of n, a(n) for n = 1..570
Programs
-
Mathematica
n = 1500; lst = {}; Do[Do[Do[If[GCD[b, c, d] == 1, r = Sqrt[1/(1/b^2 + 1/c^2 + 1/d^2)]; If[IntegerQ[r], lst = AppendTo[lst, {b, c, d}]]], {d, c - 1}], {c, b - 1}], {b, n}]; lst//Flatten
Formula
a(n) > 1.
Extensions
a(28)-a(51) from Giovanni Resta, Feb 06 2018
Comments