This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299173 #28 Feb 06 2018 08:35:56 %S A299173 1,0,0,1,2,0,0,0,1,0,0,0,2,3,0,1,0,0,0,0,0,0,0,0,2,0,0,0,3,4,0,0,0,0, %T A299173 0,1,0,0,0,0,2,0,0,0,0,0,0,0,1,3,0,0,0,4,5,0,0,0,0,0,2,0,0,1,0,0,0,0, %U A299173 0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,2,4,0,0,0,5,6,0,0,0,0,0,0,0,0,1 %N A299173 a(n) is the maximum number of squared consecutive positive integers into which the integer n can be partitioned. %C A299173 a(k^2)>=1, the inequality being strict if k is in A097812. %H A299173 Robert Israel, <a href="/A299173/b299173.txt">Table of n, a(n) for n = 1..10000</a> %e A299173 25 = 5^2 = 3^2 + 4^2 and no such partition is longer, so a(25) = 2. %e A299173 30 = 1^2 + 2^2 + 3^2 + 4^2 and no such partition is longer, so a(30) = 4. %e A299173 2018 = 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 + 16^2 + 17^2 + 18^2 and no such partition is longer, so a(2018) = 12. (This special example is due to _Seiichi Manyama_.) - _Jean-François Alcover_, Feb 05 2018 %p A299173 N:= 200: # to get a(1)..a(N) %p A299173 A:= Vector(N): %p A299173 S:= n -> n*(n+1)*(2*n+1)/6: %p A299173 M:= floor(sqrt(N)): %p A299173 for d from 1 to M do %p A299173 for b from d to M do %p A299173 s:= S(b) - S(b-d); %p A299173 if s > N then break fi; %p A299173 A[s]:= d %p A299173 od od: %p A299173 convert(A,list); # _Robert Israel_, Feb 04 2018 %t A299173 terms = 100; jmax = Ceiling[Sqrt[terms]]; kmax = Ceiling[(3*terms)^(1/3)]; Clear[a]; a[_] = 0; Do[r = Range[j, j + k - 1]; n = r . r; If[k > a[n], a[n] = k], {j, jmax}, {k, kmax}]; Array[a, terms] %Y A299173 Cf. A034705, A097812, A130052, A111044, A234304, A234311, A296338, A298467. %K A299173 nonn,look %O A299173 1,5 %A A299173 _Jean-François Alcover_, Feb 04 2018