This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299200 #20 Jan 14 2021 17:06:39 %S A299200 1,1,2,1,3,2,5,1,4,3,7,2,11,5,6,1,15,4,22,3,10,7,30,2,9,11,8,5,42,6, %T A299200 56,1,14,15,15,4,77,22,22,3,101,10,135,7,12,30,176,2,25,9,30,11,231,8, %U A299200 21,5,44,42,297,6,385,56,20,1,33,14,490,15,60,15,627,4 %N A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n. %C A299200 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A299200 Alois P. Heinz, <a href="/A299200/b299200.txt">Table of n, a(n) for n = 1..10000</a> %F A299200 Multiplicative with a(prime(n)) = A000041(n). %e A299200 The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11). %p A299200 with(numtheory): with(combinat): %p A299200 a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]): %p A299200 seq(a(n), n=1..82); # _Alois P. Heinz_, Jan 14 2021 %t A299200 Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}] %o A299200 (PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ _Michel Marcus_, Feb 26 2018 %Y A299200 Cf. A000041, A063834, A112798, A196545, A273873, A281145, A289501, A290261, A296150, A299201, A299202, A299203. %Y A299200 Cf. A000720, A003964. %K A299200 nonn,look,mult %O A299200 1,3 %A A299200 _Gus Wiseman_, Feb 05 2018