cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299203 Number of enriched p-trees whose multiset of leaves is the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 5, 1, 12, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 38, 1, 3, 1, 3, 1, 9, 1, 9, 1, 1, 1, 21, 1, 1, 4, 34, 1, 4, 1, 3, 1, 5, 1, 54, 1, 1, 3, 3, 1, 4, 1, 33, 5, 1, 1, 23, 1, 1, 1, 9, 1, 20, 1, 3, 1, 1, 1, 117, 1, 3, 3, 12, 1, 4, 1, 9, 4, 1, 1, 57, 1, 4, 1, 34
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

By convention, a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			a(54) = 9: (((22)2)1), ((222)1), (((22)1)2), (((21)2)2), ((221)2), ((22)(21)), ((22)21), ((21)22), (2221).
a(40) = 11: ((31)(11)), (((31)1)1), ((3(11))1), ((311)1), (3((11)1)), (3(111)), (((11)1)3), ((111)3), ((31)11), (3(11)1), (3111).
a(36) = 15: ((22)(11)), ((2(11))2), (((11)2)2), (((21)1)2), ((211)2), (((22)1)1), (((21)2)1), ((221)1), ((21)(21)), (22(11)), (2(11)2), ((11)22), ((22)11), ((21)21), (2211).
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y]&]}]];
    qci/@ptns