cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299209 Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).

This page as a plain text file.
%I A299209 #5 Feb 06 2018 09:19:33
%S A299209 1,1,0,-3,-6,-5,11,37,59,13,-155,-402,-415,263,1981,3748,2289,-6643,
%T A299209 -22642,-31322,-187,99040,229410,216823,-230029,-1223267,-2097812,
%U A299209 -955237,4468902,13393758,16752461,-3891704,-62382597,-131974181,-106680562,173622424,741553622,1163057561,329176545
%N A299209 Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).
%H A299209 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A299209 G.f.: 1/(1 - x*Product_{k>=1} (1 - k*x^k)).
%F A299209 a(0) = 1; a(n) = Sum_{k=1..n} A022661(k-1)*a(n-k).
%t A299209 nmax = 38; CoefficientList[Series[1/(1 - x Product[1 - k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A299209 Antidiagonal sums of A297323.
%Y A299209 Cf. A022661, A067687, A299105, A299106, A299108, A299162, A299164, A299166, A299167, A299208, A299210, A299211, A299212.
%K A299209 sign
%O A299209 0,4
%A A299209 _Ilya Gutkovskiy_, Feb 05 2018