cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299210 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + k*x^k)).

This page as a plain text file.
%I A299210 #5 Feb 06 2018 09:19:43
%S A299210 1,1,0,-2,-5,-3,5,20,27,17,-53,-152,-192,31,576,1110,694,-1297,-4519,
%T A299210 -6160,-1107,13665,31914,30643,-19339,-119260,-196142,-103318,289543,
%U A299210 859631,1062684,13710,-2690348,-5675946,-4940757,4167527,21343918,33874107,16524162,-51704908,-150454546
%N A299210 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + k*x^k)).
%H A299210 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A299210 G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + k*x^k)).
%F A299210 a(0) = 1; a(n) = Sum_{k=1..n} A022693(k-1)*a(n-k).
%t A299210 nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A299210 Antidiagonal sums of A297325.
%Y A299210 Cf. A022693, A067687, A299105, A299106, A299108, A299162, A299164, A299166, A299167, A299208, A299209, A299211, A299212.
%K A299210 sign
%O A299210 0,4
%A A299210 _Ilya Gutkovskiy_, Feb 05 2018