This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299211 #9 Feb 05 2023 22:19:54 %S A299211 1,1,0,-3,-6,-4,12,39,52,-9,-186,-392,-285,610,2291,3200,-150,-10626, %T A299211 -23487,-18841,32957,134848,198246,13961,-605248,-1409604,-1234474, %U A299211 1744213,7898753,12209679,2161666,-34344627,-84393284,-79993042,90692470,461463974,749309529,207447895,-1939084232 %N A299211 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)^k). %H A299211 Robert Israel, <a href="/A299211/b299211.txt">Table of n, a(n) for n = 0..3925</a> %H A299211 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A299211 G.f.: 1/(1 - x*Product_{k>=1} (1 - x^k)^k). %F A299211 a(0) = 1; a(n) = Sum_{k=1..n} A073592(k-1)*a(n-k). %p A299211 N:= 100: # for a(0)..a(N) %p A299211 S:= series(1/(1-x*mul((1-x^k)^k,k=1..N)),x,N+1): %p A299211 seq(coeff(S,x,i),i=0..N); # _Robert Israel_, Feb 05 2023 %t A299211 nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x] %Y A299211 Antidiagonal sums of A276554. %Y A299211 Cf. A067687, A073592, A299105, A299106, A299108, A299162, A299164, A299166, A299167, A299208, A299209, A299210, A299212. %K A299211 sign %O A299211 0,4 %A A299211 _Ilya Gutkovskiy_, Feb 05 2018