This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299214 #31 Feb 19 2019 10:24:05 %S A299214 0,0,8,16,8,0,24,4,16,8,8,12,40,0,0,40,16,4,24,8,24,0,0,0,24,8,12,24, %T A299214 8,0,32,8,0,8,0,16,32,0,24,8,8,0,32,0,8,0,0,12,40,12,0,32,8,0,8,0,32, %U A299214 8,0,0,48,0,24,40,16,0,24,8,0,0,0,4,48,8,12,24 %N A299214 Number of representations of integers by cyclotomic binary forms. %C A299214 a(m) is the number of solutions of the equation Phi_n(x,y) = m with n >= 3 and max{|x|,|y|} >= 2. Here the binary form Phi_n(x,y) is the homogeneous version of the cyclotomic polynomial phi_n(t). %C A299214 One can prove that a(m) is always a multiple of 4. %H A299214 Michel Waldschmidt, <a href="/A299214/b299214.txt">Table of n, a(n) for n = 1..1000</a> %H A299214 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %p A299214 x := 'x'; y := 'y': %p A299214 with(numtheory): for n from 3 to 1000 do %p A299214 F[n] := expand(y^phi(n)*cyclotomic(n, x/y)) od: %p A299214 g := 0: %p A299214 for m from 1 to 1000 do %p A299214 for n from 3 to 60 do # For the bounds see the reference. %p A299214 for x from -60 to 60 do %p A299214 for y from -60 to 60 do %p A299214 if F[n] = m and max(abs(x), abs(y)) > 1 %p A299214 then g := g+1 fi: %p A299214 od: %p A299214 od: %p A299214 od: a[m] := g: print(m, a[m]): g := 0 %p A299214 od: %t A299214 For[n = 3, n <= 100, n++, F[n] = Expand[y^EulerPhi[n] Cyclotomic[n, x/y]]]; g = 0; For[m = 1, m <= 100, m++, For[n = 3, n <= 60, n++, For[x = -60, x <= 60, x++, For[y = -60, y <= 60, y++, If[F[n] == m && Max[Abs[x], Abs[y] ] > 1, g = g+1]]]]; a[m] = g; Print[m, " ", a[m]]; g = 0]; %t A299214 Array[a, 100] (* _Jean-François Alcover_, Dec 01 2018, from Maple *) %o A299214 (Julia) %o A299214 using Nemo %o A299214 function countA296095(n) %o A299214 if n < 3 return 0 end %o A299214 R, x = PolynomialRing(ZZ, "x") %o A299214 K = Int(floor(5.383*log(n)^1.161)) # Bounds from %o A299214 M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt %o A299214 N = QQ(n); count = 0 %o A299214 for k in 3:K %o A299214 e = Int(eulerphi(ZZ(k))) %o A299214 c = cyclotomic(k, x) %o A299214 for m in 1:M, j in 0:M if max(j, m) > 1 %o A299214 N == m^e*subst(c, QQ(j,m)) && (count += 1) %o A299214 end end end %o A299214 4*count %o A299214 end %o A299214 A299214list(upto) = [countA296095(n) for n in 1:upto] %o A299214 print(A299214list(76)) # _Peter Luschny_, Feb 25 2018 %Y A299214 The sequence of indices m with a(m) != 0 is A296095. %Y A299214 The sequence of indices m with a(m) = 0 is A293654. %K A299214 nonn %O A299214 1,3 %A A299214 _Michel Waldschmidt_, Feb 16 2018