A299229 {2,3}-power towers in increasing order, concatenated; see Comments.
2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2
Offset: 1
Examples
As an irregular triangle, where row n contains the digits of A248907(n): 2; 3; 2, 2; 2, 3; 3, 2; 2, 2, 2; 3, 3; 3, 2, 2; 2, 2, 3; 2, 3, 2; 3, 2, 3; 3, 3, 2; 2, 2, 2, 2; 3, 2, 2, 2; 2, 3, 3; ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 12, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] Flatten[Table[t[n], {n, 1, 120}]]; (* A299229 *)
Comments