This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299230 #9 Aug 07 2024 11:56:18 %S A299230 1,1,2,2,2,3,2,3,3,3,3,3,4,4,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,4,4,4,4, %T A299230 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,5,5,5,5,5,5, %U A299230 5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 %N A299230 a(n) = height of n-th {2,3}-power tower; see Comments. %C A299230 Suppose that S is a set of real numbers. An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1), x(2), ..., x(k)), which for k > 1 is defined as (x(1), (x(2), ..., x(k))); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences. %H A299230 Clark Kimberling, <a href="/A299230/b299230.txt">Table of n, a(n) for n = 1..10000</a> %e A299230 t(8) = (3,2,2), so that a(8) = 3. %t A299230 t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; %t A299230 t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; %t A299230 t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; %t A299230 z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; %t A299230 While[f < 13, n = f; While[n < z, p = 1; %t A299230 While[p < 12, m = 2 n + 1; v = t[n]; k = 0; %t A299230 While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; %t A299230 p = p + 1; n = m]]; f = f + 1] %t A299230 Flatten[Table[t[n], {n, 1, 120}]]; (* A299229 *) %t A299230 w = Table[Length[t[n]], {n, 1, 120}]; (* A299230 *) %Y A299230 Cf. A299229. %K A299230 nonn,easy %O A299230 1,3 %A A299230 _Clark Kimberling_, Feb 06 2018