A299235 Number of 2's in the n-th {2,3}-power tower; see Comments.
1, 0, 2, 1, 1, 3, 0, 2, 2, 2, 1, 1, 4, 3, 1, 0, 3, 2, 3, 2, 3, 2, 2, 1, 2, 1, 5, 4, 4, 3, 2, 1, 1, 0, 4, 3, 3, 2, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 3, 2, 2, 1, 2, 1, 1, 0, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2
Offset: 1
Examples
t(80) = (3,2,2,2,2,3), so that a(80) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 12, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] Table[Count[t[n], 2], {n, 1, 100}]; (* A299235 *) Table[Count[t[n], 3], {n, 1, 100}]; (* A299236 *)
Comments