A299239 Ranks of palindromic {2,3}-power towers; see Comments.
1, 2, 3, 6, 7, 10, 11, 13, 16, 20, 25, 27, 34, 35, 40, 45, 48, 53, 55, 66, 70, 75, 80, 89, 100, 109, 111, 119, 130, 142, 147, 155, 160, 168, 177, 185, 196, 204, 213, 221, 223, 247, 258, 266, 278, 286, 291, 315, 320, 344, 353, 377, 388, 412, 421, 445, 447, 463
Offset: 1
Examples
The first six palindromes are t(1) = (2), t(2) = (3), t(3) = (2,2), t(6) = (2,2,2), t(7) = (3,3), t(10) = (2,3,2).
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..10000 (terms 1..280 from Clark Kimberling)
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 12, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] Flatten[Table[Select[Range[1000], t[#] == Reverse[t[#]] &], {n, 1, 120}]]
Comments