This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299241 #15 Aug 07 2024 15:23:12 %S A299241 4,5,18,20,22,23,25,31,62,74,76,77,82,84,85,90,92,93,96,97,99,104,105, %T A299241 107,128,129,131,135,238,246,250,252,253,294,298,300,301,306,308,309, %U A299241 312,313,315,326,330,332,333,338,340,341,344,345,347,358,362,364 %N A299241 Ranks of {2,3}-power towers in which #2's = #3's; see Comments. %C A299241 Suppose that S is a set of real numbers. An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1), x(2), ..., x(k)), which for k > 1 is defined as (x(1), (x(2), ..., x(k))); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences. %C A299241 This sequence together with A299240 and A299242 partition the positive integers. %H A299241 Clark Kimberling, <a href="/A299241/b299241.txt">Table of n, a(n) for n = 1..1000</a> %e A299241 The first six terms are the ranks of these towers: t(4) = (2,3), t(5) = (3,2), t(18) = (3,3,2,2), t(20) = (3,2,2,3), t(22) = (3,2,3,2), t(23) = (2,3,2,3). %t A299241 t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; %t A299241 t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; %t A299241 t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; %t A299241 z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; %t A299241 While[f < 13, n = f; While[n < z, p = 1; %t A299241 While[p < 12, m = 2 n + 1; v = t[n]; k = 0; %t A299241 While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; %t A299241 p = p + 1; n = m]]; f = f + 1] %t A299241 Select[Range[1000], Count[t[#], 2] > Count[t[#], 3] &]; (* A299240 *) %t A299241 Select[Range[1000], Count[t[#], 2] == Count[t[#], 3] &]; (* this sequence *) %t A299241 Select[Range[1000], Count[t[#], 2] < Count[t[#], 3] &]; (* A299242 *) %Y A299241 Cf. A299229, A299240, A299242. %K A299241 nonn,easy %O A299241 1,1 %A A299241 _Clark Kimberling_, Feb 07 2018